Raw Materials
Aluminum numbers among the most abundant elements: after oxygen and silicon, it is the most plentiful element found in the earth's surface, making up over eight percent of the crust to a depth of ten miles and appearing in almost every common rock.
However, aluminum does not occur in its pure, metallic form but rather as hydrated aluminum oxide (a mixture of water and alumina) combined with silica, iron oxide, and titania.
The most significant aluminum ore is bauxite, named after the French town of Les Baux where it was discovered in 1821. Bauxite contains iron and hydrated aluminum oxide, with the latter representing its largest constituent material.
At present, bauxite is plentiful enough so that only deposits with an aluminum oxide content of forty-five percent or more are mined to make aluminum. Concentrated deposits are found in both the northern and southern hemispheres, with most of the ore used in the United States coming from the West Indies, North America, and Australia. Since bauxite occurs so close to the earth's surface, mining procedures are relatively simple. Explosives are used to open up large pits in bauxite beds, after which the top layers of dirt and rock are cleared away. The exposed ore is then removed with front end loaders, piled in trucks or railroad cars, and transported to processing plants. Bauxite is heavy (generally, one ton of aluminum can be produced from four to six tons of the ore), so, to reduce the cost of transporting it, these plants are often situated as close as possible to the bauxite mines.
However, aluminum does not occur in its pure, metallic form but rather as hydrated aluminum oxide (a mixture of water and alumina) combined with silica, iron oxide, and titania.
The most significant aluminum ore is bauxite, named after the French town of Les Baux where it was discovered in 1821. Bauxite contains iron and hydrated aluminum oxide, with the latter representing its largest constituent material.
At present, bauxite is plentiful enough so that only deposits with an aluminum oxide content of forty-five percent or more are mined to make aluminum. Concentrated deposits are found in both the northern and southern hemispheres, with most of the ore used in the United States coming from the West Indies, North America, and Australia. Since bauxite occurs so close to the earth's surface, mining procedures are relatively simple. Explosives are used to open up large pits in bauxite beds, after which the top layers of dirt and rock are cleared away. The exposed ore is then removed with front end loaders, piled in trucks or railroad cars, and transported to processing plants. Bauxite is heavy (generally, one ton of aluminum can be produced from four to six tons of the ore), so, to reduce the cost of transporting it, these plants are often situated as close as possible to the bauxite mines.
The Manufacturing Process
Extracting pure aluminum from bauxite entails two processes. First, the ore is refined to eliminate impurities such as iron oxide, silica, titania, and water. Then, the resultant aluminum oxide is smelted to produce pure aluminum. After that, the aluminum is rolled to produce foil.
Refining—Bayer process
1# The Bayer process used to refine bauxite comprises four steps: digestion, clarification, precipitation, and calcination. During the digestion stage, the bauxite is ground and mixed with sodium hydroxide before being pumped into large, pressurized tanks. In these tanks, called digesters, the combination of sodium hydroxide, heat, and pressure breaks the ore down into a saturated solution of sodium aluminate and insoluble contaminants, which settle to the bottom.
2# The next phase of the process, clarification, entails sending the solution and the contaminants through a set of tanks and presses. During this stage, cloth filters trap the contaminants, which are then disposed of. After being filtered once again, the remaining solution is transported to a cooling tower.
3# In the next stage, precipitation, the aluminum oxide solution moves into a large silo, where, in an adaptation of the Deville method, the fluid is seeded with crystals of hydrated aluminum to promote the formation of aluminum particles. As the seed crystals attract other crystals in the solution, large clumps of aluminum hydrate begin to form. These are first filtered out and then rinsed.
4# Calcination, the final step in the Bayer refinement process, entails exposing the aluminum hydrate to high temperatures. This extreme heat dehydrates the material, leaving a residue of fine white powder: aluminum oxide.
Smelting
1# Smelting, which separates the aluminum-oxygen compound (alumina) produced by the Bayer process, is the next step in extracting pure, metallic aluminum from bauxite. Although the procedure currently used derives from the electrolytic method invented contemporaneously by Charles Hall and Paul-Louis-Toussaint Héroult in the late nineteenth century, it has been modernized. First, the alumina is dissolved in a smelting cell, a deep steel mold lined with carbon and filled with a heated liquid conductor that consists mainly of the aluminum compound cryolite.
2# Next, an electric current is run through the cryolite, causing a crust to form over the top of the alumina melt. When additional alumina is periodically stirred into the mixture, this crust is broken and stirred in as well. As the alumina dissolves, it electrolytically decomposes to produce a layer of pure, molten aluminum on the bottom of the smelting cell. The oxygen merges with the carbon used to line the cell and escapes in the form of carbon dioxide.
3# Still in molten form, the purified aluminum is drawn from the smelting cells, transferred into crucibles, and emptied into furnaces. At this stage, other elements can be added to produce aluminum alloys with characteristics appropriate to the end product, though foil is generally made from 99.8 or 99.9 percent pure aluminum. The liquid is then poured into direct chill casting devices, where it cools into large slabs called "ingots" or "reroll stock." After being annealed—heat treated to improve workability—the ingots are suitable for rolling into foil.
Alternative Method
Alternative Method
An alternative method to melting and casting the aluminum is called "continuous casting." This process involves a production line consisting of a melting furnace, a holding hearth to contain the molten metal, a transfer system, a casting unit, a combination unit consisting of pinch rolls, shear and bridle, and a rewind and coil car. Both methods produce stock of thicknesses ranging from 0.125 to 0.250 inch (0.317 to 0.635 centimeter) and of various widths. The advantage of the continuous casting method is that it does not require an annealing step prior to foil rolling, as does the melting and casting process, because annealing is automatically achieved during the casting process.
Rolling foil
1# After the foil stock is made, it must be reduced in thickness to make the foil. This is accomplished in a rolling mill, where the material is passed several times through metal rolls called work rolls. As the sheets (or webs) of aluminum pass through the rolls, they are squeezed thinner and extruded through the gap between the rolls. The work rolls are paired with heavier rolls called backup rolls, which apply pressure to help maintain the stability of the work rolls. This helps to hold the product dimensions within tolerances. The work and backup rolls rotate in opposite directions. Lubricants are added to facilitate the rolling process. During this rolling process, the aluminum occasionally must be annealed (heat-treated) to maintain its workability.
* The reduction of the foil is controlled by adjusting the rpm of the rolls and the viscosity (the resistance to flow), quantity, and temperature of the rolling lubricants. The roll gap determines both the thickness and length of the foil leaving the mill. This gap can be adjusted by raising or lowering the upper work roll. Rolling produces two natural finishes on the foil, bright and matte. The bright finish is produced when the foil comes in contact with the work roll surfaces. To produce the matte finish, two sheets must be packed together and rolled simultaneously; when this is done, the sides that are touching each other end up with a matte finish. Other mechanical finishing methods, usually produced during converting operations, can be used to produce certain patterns.
2# As the foil sheets come through the rollers, they are trimmed and slitted with circular or razor-like knives installed on the roll mill. Trimming refers to the edges of the foil, while slitting involves cutting the foil into several sheets. These steps are used to produce narrow coiled widths, to trim the edges of coated or laminated stock, and to produce rectangular pieces. For certain fabricating and converting operations, webs that have been broken during rolling must be joined back together, or spliced. Common types of splices for joining webs of plain foil and/or backed foil include ultrasonic, heat-sealing tape, pressure-sealing tape, and electric welded. The ultrasonic splice uses a solid-state weld—made with an ultrasonic transducer—in the overlapped metal.
Finishing processes
1# For many applications, foil is used in I V / combination with other materials. It can be coated with a wide range of materials, such as polymers and resins, for decorative, protective, or heat-sealing purposes. It can be laminated to papers, paperboards, and plastic films. It can also be cut, formed into any shape, printed, embossed, slit into strips, sheeted, etched, and anodized. Once the foil is in its final state, it is packaged accordingly and shipped to the customer.